Buildings' energy efficiency planning towards urban energy transition

Markos Damasiotis Electrical Engineer, MSC NTUA Head of Development Programmes Division

International policy context

Sept.2015 – UN Sustainable Development Summit World leaders adopted the **"2030 Agenda for Sustainable Development"** 17 Sustainable Development Goals

"Paris Agreement", Dec.2015 – UN Climate Change Conference (COP21) Historic agreement for joint action to address climate change, signed by 175 countries

Transition to low-carbon economies is a key political priority at international level

EU Energy targets - policy context

Europe 2020 Strategy (2010) – Climate change and energy

- 1. Greenhouse gas emissions 20% lower than 1990 levels
- 2. 20% of energy coming from renewables
- 3. 20% increase in energy efficiency

2030 Climate and Energy framework (2014)

- **1.** At least 40% cuts in greenhouse gas emissions (from 1990 levels) (binding for each MS and at EU level)
- 2. At least 27% share in renewable energy (binding at EU level, not for each MS)
- **3.** At least 27% improvement in energy efficiency [update in 2020] (indicative at EU and national level)

Proposal for 30% binding target at EU level by 2030 'Clean Energy for all Europeans' (2016)

EU Energy targets - policy context

"A Roadmap for moving to a competitive low carbon economy in 2050" [COM(2011)112]

- 80% reduction of greenhouse emissions in the EU by 2050 (compared to 1990)
- Interim targets: 40% reduction by 2030, 60% by 2040

EU Energy targets - policy context

Building sector in the EU

- 40% of final energy consumption
- 36% of CO₂ emissions
- 35% of European buildings are older than 50 years
- 2/3 of European buildings were constructed prior to energy efficiency regulations and minimum standards
- Renovation rate is only ~1% per year
- Strategic sector for achieving 2020/ 2030/ 2050 targets

Covenant of Mayors

- The largest voluntary initiative on energy and climate, of local and regional authorities, committing to achieve, on a voluntary basis, the EU 2020 targets on energy and climate in their territories
- New strengthened "Covenant of Mayors for Climate and Energy" (Oct.2015)
- ✓ Commitment of signatories to achieve 40% CO₂ reduction by 2030 and adopt a common approach for mitigation and adaptation of climate change
- Over 7,600 signatories North and South Mediterranean
- Sustainable Energy and Climate Action Plans (SECAPs)

Why an energy transition for the Mediterranean?

Key Mediterranean challenges: Climate change

GLOBAL MEAN SURFACE TEMPERATURE CHANGE

Mediterranean region 2°C global temperature rise IPCC SRES A2 and B2 emission scenarios

2

3

5th MEDENER International Conference on Energy Transition

Addressing climate change and migration in the Mediterranean region through energy transition akopoulos, 2005

Key Mediterranean challenges : Growing population

Population in Mediterranean cities

- Northern Mediterranean Countries (NMCs) report quite moderate growth patterns (0.7 % for 1970-2000)
- Southern and Eastern Mediterranean
 Countries (SEMCs) report an accelerated
 urbanization (3.6 % for 1970-2000)
- By 2025, the urban population is likely to exceed 243 million in the SEMCs (145 million in 2000) and to be in the order of 135 million in the NMCs (129 million in 2000). A sizeable third of this growth will take place in Mediterranean coastal areas
- It is estimated that by 2030, a further
 42 million housing will be needed

Key Mediterranean challenges : Energy consumption

30% energy saving by 2040 (23% in 2030)

7% increase from current levels compared to more than 50% increase in the CS

The building sector currently accounts for 35% of total final energy consumption in the Mediterranean, with 24% for the residential sector alone and a booming services sector in the South.

The building sector, is a key sector, since it allows influence to be brought to bear on both demand (energy efficiency measures) and supply (integration of Renewables).

100%

90% 80%

70%

60% 50%

40% 30%

20%

10%

MEDENER report 2013

Portugal

Tunisia

5th MEDENER International Conference on Energy Transition Addressing climate change and migration in the Mediterranean region through energy transition

Lebanon

Greece

Breakdown of final energy consumption by sector (2010)

Spain

Industry Transport Households

Italy

Algeria

France

Tertiary

Morocco

Agriculture

Key Mediterranean challenges : Energy inefficient building stock

... indicatively, in Greece

~60% of Greek buildings constructed before 1980, after which the thermal-insulation regulation was issued

Imagine.....

~ 2,300,000 buildings are thermally exposed, thus extremely highly energy demanding

- Average energy consumption for public buildings 150-800kWh/m²
- ➤ Annual energy related expenses of public buildings ~450,000,000€

Γενικά για κτίρια κατοικίας οι maximum τιμές πρωτογενούς ενέργειας ποικίλλουν μετ Για κτίρια τριτογενούς τομέα οι τιμές ποικίλλουν από 25 έως και 270 kWh/m2/yr (π.χ.

Key Mediterranean challenges : Energy inefficient building stock

... indicatively, in Greece

~60% of Greek buildings constructed before 1980, after which the thermal-insulation regulation was issued

Imagine.....

~ 2,300,000 buildings are thermally exposed, thus extremely highly energy demanding

- Average energy consumption for public buildings 150-800kWh/m²
- Annual energy related expenses of public buildings ~450,000,000€

NZEB standards: residential buildings upper limits of primary energy consumption vary between 20-160 kWh/m2/yr. For services/commercial buildings between 25 -270 kWh/m2/yr (e.g Estonia, Romania etc.) This variation has to do with differences in calculation methodologies, differences in typologies, climate conditions etc.)

Barriers towards energy transition

Mediterranean EU Countries

- Slow rate in harmonization with EPBD 2010/31/EU : NZEB is not yet defined or it is still under development with very slow rates (the process is, however, in progress)
- Slow renovation rates of buildings: Slow renovation rates towards the target of 3% annual floor-area renovation of public buildings (EED 2012/27/EU); Absent affordable Energy Efficiency Action Plans for Public Buildings at local and regional level

MED region

- No specific policy provisions to tackle urban sprawl symptoms such as Urban Heat Island (UHI) (absent guidelines and UHI indicators)
- Lack of funding and know-how to access innovative financing which hinders the actual implementation of energy upgrading projects
- Huge administrative, technical and financing shortcomings hinder local authorities to develop and/or to implement their Sustainable Energy Action Plans (SEAPs). Most municipalities have not yet categorized their public building stock, limited energy audits, poor energy-management systems
- Limited exploitation of the role of the "Energy Manager"

At the same time...

... indicatively, in Greece:

...Financial crisis

led to highly **reduced energy consumption**.

However, it is just a reflection of Energy Poverty in many Households in the Mediterranean.

C.A. Balaras, E.G. Dascalaki, REPUBLIC-MED /GRASP-MED SYNERGIES CONFERENCE - Energy Performance Indicators and Methods for a Sustainable Framework of Buildings Refurbishment, Piraeus, 12 March 2015.

Strategic objectives to confront barriers

Mediterranean needs a Push...

...An <u>IMPULSE</u>

To escape inaction in issues related to lowcarbon development

Need to confront the identified challenges both at administrative and in technical level in order to contribute to Mediterranean roadmaps for a sustainable and low-carbon economy

Strategic objectives to confront barriers

Definition of NZEB and costoptimal levels. Allocate International/national funds to low-carbon development Programmes. Design requirements for Urban Heat Island mitigation plans. Innovative financing.

NZEB: More accurate Energy Performance Indicators (EPIs) prediction tools for the 244/2012/EC.

Financing: National funds share; Promotion of ESCOs and PPPs. **UHI:** Develop indicators and models adapted in urban

strategies

Buildings' energy renovation planning at a glance

Buildings' energy renovation at urban scale

Approach flow-chart

WE NEED An information system model (permits to assess current situation and ERB

Description: <u>A model to be used in MED Regions for information integrated treatment to facilitate the public</u> and private owners decisions but also to plan ERB at local, regional and MED scales

MARIE MED project, Factsheet: Information System Model.

Buildings' energy renovation planning in detail

Identification of Buildings' Typologies and Archetypes

Mediterranean protocol and platform for buildings' Typologies classification

Available Typologies platforms

1) TABULA/EPISCOPE projects

typology/country/

2) IMPULSE project

https://impulse.interreg-med.eu/

аул	Building name	Building floor area (m²)	Address (incl. postcode)	GPS Coordinates		Classification Criteria (CC) into Public Building Typologies (PBT)								
				Latitude	Longitude	Building type / use (CC1)	Co	nstruction year (CC2)	Nº of floors (CC3)	Gros	ss floor area (m ²) (CC4)	Construction type (CC5)	Heating system (CC6)	Cooling
1	School building 1	5,000	Dedalou 34, 71202	35.341846	25.148254	Educational		E.g. 1980-2006	E.g. 3-5		E.g. 1000-5000	E.g. lightweight	E.g. Oil boiler with radiators	
2	School building 2	4,000	Komerou 7, 71202	35.341846	25.148254	Educational		E.g. 1980-2006	E.g. 3-5		E.g. 1000-5000	E.g. lightweight	E.g. Oil boiler with radiators	
3	Office building 1	6,000	Idomeneos 32, 71202	35.341846	25.148254	Offices	-	E.g. 1960-1979	E.g. up to 2	-	E.g. >5000	E.g. heavywaight	E.g. Oil boiler with radiators	E.g. Lo
4	Office building 2	7,000	Epimenidou 11.71202	35.341846	25.148254	Crice	^	E.g. 1960-1979	E.q. up to 2		E.g. >5000	E.g. heavyweight	E.g. Oil boiler with radiators	E.g. Lo
5						Haalthcars			E.g. 26	L				
6						Public entertainment Museums and libraries Communicy/public assembly			_					
7										<u> </u>				
8						Industrial Enviduation for comparising								
9							<u> </u>							
10														
11														
12														
		0	1						1					

Public Buildin Typology (PBT)

> PBTS PBT5

DRTT

em (CC7)

IMPULSE MED project (coordinated by CRES), Deliverable D3.2 1.

Buildings' Archetypes simulations and decision-making

- Energy analysis of the existing case/diagnosis of vulnerabilities.
- Parametric testing of renovation scenarios and identification of cost-optimal solutions.

Use of scientifically validated tools:

- National software for building energy analysis.
- Take advantage of dynamic modelling software e.g. EnergyPlus, TRNSYS, etc.

Processing of KPIs and extrapolation to district level

Mediterranean protocol for KPIs' processing

A	В	C	0	E	A	В	C	D	E	F	
KPIs	for the	e base-case s	cenario	Ambassador_PBT1	KPIs for the minor-retrofit scenarios			Ambassador_PBT1			
	Bu	ilding name	21			Ret	rofit scenario	Scenario1_PBT1	Scenario2_PBT1 (optional)	Scen (c	
	Buildin	g floor area (m⁻)			Bu	uilding name	0			
		Total annual primary energy	kWh/m²/yr			د ب منامانین	a floor area l	2)	0		
	Energy Performance Indicators	consumption	kWh/yr	0		Sullain	ig noor area (0	_	
		Annual final energy	kWh/m²/yr]	Sho	rt descriptio			ĺ –	
		space heating	kWh/yr	0							<u> </u>
		Annual final energy consumption for space cooling	kWh/m²/yr		SIG		Total annual primary energy	kWh/m²/yr			
			kWh/yr	0			consumption	kWh/yr	0	0	
		Annual final energy consumption for domestic hot water	kWh/m²/yr				Annual final energy	kWh/m²/yr			
			kWh/yr	0			space heating	kWh/yr	0	0	
		Annual final energy consumption for lighting	kWh/m²/yr			Annual final energy consumption for space cooling	kWh/m²/yr				
			kWh/yr	0	cato		kWh/yr	0	0		
		Annual electricity consumption	kWh/m²/yr		Indi	Annual final energy	kWh/m²/yr				
			kWh/yr	0		JCe	domestic hot water	kWh/yr	0	0	
		Annual consumption of fossil fuel	kWh/m²/yr		mar	Annual final energy	kWh/m²/yr				
			kWh/yr	0		rfor	lighting	kWh/yr	0	0	
						γPe	Annual electricity	kWh/m²/yr			
						erg	consumption	kWh/yr	0	0	
						E	Annual consumption of	kWh/m²/yr			
							fossil fuel	kWh/yr	0	0	

Available platform

IMPULSE project https://impulse.interreg-med.eu/

IMPULSE MED project (coordinated by CRES), Deliverable D3.2.1.

Mapping of building-stock energy renovation plans

Take advantage of geo-informatics systems

MED

5th MEDENER International Conference on Energy Transition

Addressing climate change and migration in the Mediterranean region through energy transition

Building energy renovation: Implementation and monitoring

Example of cool-roof (CRES project: CRIBUTE)

5th MEDENER International Conference on Energy Transition

Addressing climate change and migration in the Mediterranean region through energy transition

within operating hours

Building energy renovation: Implementation and monitoring

Energy renovation of 5 Student Accommodation buildings (CRES project: ELIH-MED)

How are the typical thermal conditions in your room in winter?

- > DIAGNOSIS OF CURRENT STATE
- FEASIBILITY OF ENERGY RENOVATION SCENARIOS
- > TECHNICAL FINANCIAL ACTION PLAN

Implemented measures:

- External insulation to all walls and exposed floors
- Solar hot water collectors on roofs
- Replacement of all lamps in student rooms
- Space heating controls
- IMPLEMENTATION

MONITORING-EVALUATION

- Central heat and electricity meters
 Wireless transmission of energy data and
- display in near-real time on screen at central location
- Electricity meters / temperature meters on indicative rooms

Scenario	Pilotis Insulation	External Walls Insulation	Roof Insulation	Rooms Incandescent light bulbs replacement	Solar Hot Water Collectors	Space Heating Controls
1	\checkmark	\checkmark				\checkmark
2	\checkmark	\checkmark	\checkmark			\checkmark
3	\checkmark	\checkmark		\checkmark		\checkmark
4	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark
5	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
6	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark

Funding energy efficiency projects (in builidngs)

- Classical financing within the annual budget of the institutions -"owners" of buildings (usually incorporation of EE measures in long term projects such as reconstruction)
- Financing from National, EU Funds / banks and other International Institutions (Structural Funds, INTERREG, EuropeAid) EBRD, World Banks (limited resources an/or difficulties in access to capitals)
- External Contracting (EPC) (some barriers such as unsolved yet issues regarding certification of saving/contracting, PPPs procedures etc)
- Internal Contracting (urgent small scale projects, know-how available, internal financing)

Energy Performance Contracting

Internal Contracting Principle

Thank you for your attention

Markos Damasiotis Electrical Engineer, MSC NTUA Head of Development Programmes Division

